Chai.newJoin the waitlist 

Create Memory langbase.memories.create()

Create a new AI memory on Langbase using the langbase.memories.create() function.


Generate a User/Org API key

You will need to generate an API key to authenticate your requests. For more information, visit the User/Org API key documentation.


API reference

langbase.memories.create(options)

Function Signature

langbase.memories.create(options);

// with types.
langbase.memories.create(options: MemoryCreateOptions);

options

  • Name
    options
    Type
    MemoryCreateOptions
    Description

    MemoryCreateOptions Object

    interface MemoryCreateOptions {
    	name: string;
    	description?: string;
    	top_k?: number;
    	chunk_size?: number;
    	chunk_overlap?: number;
    	embedding_model?:
    		| 'openai:text-embedding-3-large'
    		| 'cohere:embed-multilingual-v3.0'
    		| 'cohere:embed-multilingual-light-v3.0'
    		| 'google:text-embedding-004';
    }
    

    Following are the properties of the options object.


  • Name
    name
    Type
    string
    Required
    Required
    Description

    Name of the memory.

  • Name
    description
    Type
    string
    Description

    Description of the memory.

  • Name
    top_k
    Type
    number
    Description

    Number of chunks to return.

    Default: 10

    Minimum: 1 Maximum: 100

  • Name
    chunk_size
    Type
    number
    Description

    Maximum number of characters in a single chunk.

    Default: 10000

    Maximum: 30000

    Appropriate value

    Cohere has a limit of 512 tokens (1 token ~= 4 characters in English). If you are using Cohere models, adjust the chunk_size accordingly. For most use cases, default values should work fine.

  • Name
    chunk_overlap
    Type
    number
    Description

    Number of characters to overlap between chunks.

    Default: 2048

    Maximum: Less than chunk_size

  • Name
    embedding_model
    Type
    string
    Description

    The model to use for text embeddings. Available options:

    • openai:text-embedding-3-large
    • cohere:embed-multilingual-v3.0
    • cohere:embed-multilingual-light-v3.0
    • google:text-embedding-004

    Default: openai:text-embedding-3-large

Usage example

Install the SDK

npm i langbase

Environment variables

.env file

LANGBASE_API_KEY="<USER/ORG-API-KEY>"

Create memory

Create memory on Langbase

import {Langbase} from 'langbase';

const langbase = new Langbase({
	apiKey: process.env.LANGBASE_API_KEY!,
});

async function main() {
	const memory = await langbase.memories.create({
		name: 'knowledge-base',
		description: 'An AI memory for storing company internal docs.',
	});

	console.log('Memory created:', memory);
}

main();

Response

  • Name
    MemoryCreateResponse
    Type
    object
    Description

    The response object returned by the langbase.memories.create() function.

    MemoryCreateResponse

    interface MemoryCreateResponse {
    	name: string;
    	description: string;
    	owner_login: string;
    	url: string;
    	embedding_model:
    		| 'openai:text-embedding-3-large'
    		| 'cohere:embed-multilingual-v3.0'
    		| 'cohere:embed-multilingual-light-v3.0';
    	chunk_size: number;
    	chunk_overlap: number;
    	top_k: number;
    }
    
    • Name
      name
      Type
      string
      Description

      Name of the memory.

    • Name
      description
      Type
      string
      Description

      Description of the AI memory.

    • Name
      owner_login
      Type
      string
      Description

      Login of the memory owner.

    • Name
      url
      Type
      string
      Description

      Memory access URL.

    • Name
      embedding_model
      Type
      string
      Description

      The embedding model used by the AI memory.

      • openai:text-embedding-3-large
      • cohere:embed-multilingual-v3.0
      • cohere:embed-multilingual-light-v3.0

Response of langbase.memories.create()

{
	"name": "knowledge-base",
	"description": "An AI memory for storing company internal docs.",
	"owner_login": "user123",
	"url": "https://langbase.com/user123/document-memory",
	"embedding_model": "openai:text-embedding-3-large",
	"chunk_size": 10000,
	"chunk_overlap": 2048,
	"top_k": 10,
}