Embed langbase.embed()
You can use the embed()
function to generate vector embeddings for text chunks. This is particularly useful for semantic search, text similarity comparisons, and other NLP tasks.
Generate a User/Org API key
You will need to generate an API key to authenticate your requests. For more information, visit the User/Org API key documentation.
API reference
langbase.embed(options)
Generate embeddings by running the langbase.embed()
function.
Function Signature
langbase.embed(options);
// with types
langbase.embed(options: EmbedOptions);
options
- Name
options
- Type
- EmbedOptions
- Description
EmbedOptions Object
interface EmbedOptions { chunks: string[]; embeddingModel?: EmbeddingModels; } type EmbeddingModels = | 'openai:text-embedding-3-large' | 'cohere:embed-multilingual-v3.0' | 'cohere:embed-multilingual-light-v3.0' | 'google:text-embedding-004';
Following are the properties of the options object.
chunks
- Name
chunks
- Type
- string[]
- Required
- Required
- Description
An array of text chunks to generate embeddings for.
embeddingModel
- Name
embeddingModel
- Type
- EmbeddingModels
- Description
The embedding model to use. Available options:
openai:text-embedding-3-large
cohere:embed-multilingual-v3.0
cohere:embed-multilingual-light-v3.0
google:text-embedding-004
Install the SDK
npm i langbase
Environment variables
.env file
LANGBASE_API_KEY="<USER/ORG-API-KEY>"
langbase.embed()
examples
langbase.embed()
import { Langbase } from 'langbase';
const langbase = new Langbase({
apiKey: process.env.LANGBASE_API_KEY!,
});
async function main() {
const embeddings = await langbase.embed({
chunks: [
"The quick brown fox",
"jumps over the lazy dog"
]
});
console.log('Embeddings:', embeddings);
}
main();
Response
Response of langbase.embed()
is a Promise<number[][]>
.
EmbedResponse Type
type EmbedResponse = number[][];
- Name
response
- Type
- number[][]
- Description
A 2D array where each inner array represents the embedding vector for the corresponding input chunk.
EmbedResponse Example
[
[-0.023, 0.128, -0.194, ...],
[0.067, -0.022, 0.289, ...],
]