List Memories langbase.memory.list()
Retrieve a list of all AI memory present in an account on Langbase using the langbase.memory.list()
function.
Generate a User/Org API key
You will need to generate an API key to authenticate your requests. For more information, visit the User/Org API key documentation.
API reference
langbase.memory.list()
Function Signature
langbase.memory.list();
The langbase.memory.list()
method takes no parameters and returns an array of memories present in your account.
Usage example
Install the SDK
npm i langbase
pnpm i langbase
yarn add langbase
Environment variables
.env file
LANGBASE_API_KEY="<USER/ORG-API-KEY>"
List memories
List all memories
import {Langbase} from 'langbase';
const langbase = new Langbase({
apiKey: process.env.LANGBASE_API_KEY!,
});
const memories = await langbase.memory.list();
Response
- Name
MemoryListResponse[]
- Type
- array
- Description
The response array returned by the
langbase.memory.list()
function.MemoryListResponse
interface MemoryListResponse { name: string; description: string; owner_login: string; url: string; embedding_model: | 'openai:text-embedding-3-large' | 'cohere:embed-multilingual-v3.0' | 'cohere:embed-multilingual-light-v3.0'; }
- Name
name
- Type
- string
- Description
Name of the memory.
- Name
description
- Type
- string
- Description
Description of the memory.
- Name
owner_login
- Type
- string
- Description
Login of the memory owner.
- Name
url
- Type
- string
- Description
Memory access URL.
- Name
embedding_model
- Type
- string
- Description
The embedding model used by the AI memory.
openai:text-embedding-3-large
cohere:embed-multilingual-v3.0
cohere:embed-multilingual-light-v3.0
Response of langbase.memory.list()
[
{
"name": "knowledge-base",
"description": "An AI memory for storing company internal docs.",
"owner_login": "user123",
"url": "https://langbase.com/user123/document-memory",
"embedding_model": "openai:text-embedding-3-large"
},
{
"name": "multilingual-knowledge-base",
"description": "Advanced memory with multilingual support",
"owner_login": "user123",
"url": "https://langbase.com/user123/multilingual-memory",
"embedding_model": "cohere:embed-multilingual-v3.0"
}
]