Memory: List v1
The list
memory API endpoint allows you to get a list of memory sets on Langbase with API. This endpoint requires a User or Org API key.
Generate a User/Org API key
You will need to generate an API key to authenticate your requests. For more information, visit the User/Org API key documentation.
GET/v1/memory
Get a list of memory
Get a list of all memory by sending a GET request to this endpoint.
Headers
- Name
Content-Type
- Type
- string
- Required
- Required
- Description
Request content type. Needs to be
application/json
.
- Name
Authorization
- Type
- string
- Required
- Required
- Description
Replace
<YOUR_API_KEY>
with your user/org API key.
List Memory
GET
/v1/memoryimport {Langbase} from 'langbase';
const langbase = new Langbase({
apiKey: '<YOUR_API_KEY>', // Replace with your API key
});
const memories = await langbase.memory.list();
Response
- Name
Memory[]
- Type
- Array<Memory>
- Description
An array of Memory objects returned by the API endpoint.
Memory
interface MemoryListResponse { name: string; description: string; owner_login: string; url: string; embedding_model: | 'openai:text-embedding-3-large' | 'cohere:embed-multilingual-v3.0' | 'cohere:embed-multilingual-light-v3.0'; }
- Name
name
- Type
- string
- Description
Name of the memory.
- Name
description
- Type
- string
- Description
Description of the AI memory.
- Name
owner_login
- Type
- string
- Description
Login of the memory owner.
- Name
url
- Type
- string
- Description
Memory studio URL.
- Name
embedding_model
- Type
- string
- Description
The embedding model used by the AI memory.
openai:text-embedding-3-large
cohere:embed-multilingual-v3.0
cohere:embed-multilingual-light-v3.0
API Response
[
{
"name": "knowledge-base",
"description": "An AI memory for storing company internal docs.",
"owner_login": "user123",
"url": "https://langbase.com/user123/document-memory",
"embedding_model": "openai:text-embedding-3-large"
},
{
"name": "multilingual-knowledge-base",
"description": "Advanced memory with multilingual support",
"owner_login": "user123",
"url": "https://langbase.com/user123/multilingual-memory",
"embedding_model": "cohere:embed-multilingual-v3.0"
}
]