Embed API v1

The embed API endpoint allows you to generate vector embeddings for text chunks. This is particularly useful for semantic search, text similarity comparisons, and other NLP tasks.


  • Maximum number of chunks per request: 100
  • Maximum length per chunk: 8192 characters
  • Available embedding models:
    • openai:text-embedding-3-large
    • cohere:embed-v4.0
    • cohere:embed-multilingual-v3.0
    • cohere:embed-multilingual-light-v3.0
    • google:text-embedding-004

You will need to generate an API key to authenticate your requests. For more information, visit the User/Org API key documentation.

Embedding Models API Keys

Please add the LLM API keys for the embedding models you want to use in your API key settings.


POST/v1/embed

Generate vector embeddings for text chunks by sending them to the embed API endpoint.

Headers

  • Name
    Content-Type
    Type
    string
    Required
    Required
    Description

    Request content type. Needs to be application/json.

  • Name
    Authorization
    Type
    string
    Required
    Required
    Description

    Replace <YOUR_API_KEY> with your user/org API key.


Request Body

  • Name
    chunks
    Type
    string[]
    Required
    Required
    Description

    An array of text chunks to generate embeddings for. Maximum 100 chunks per request, with each chunk limited to 8192 characters.

  • Name
    embeddingModel
    Type
    string
    Description

    The embedding model to use. Available options:

    • openai:text-embedding-3-large
    • cohere:embed-multilingual-v3.0
    • cohere:embed-multilingual-light-v3.0
    • google:text-embedding-004

    Default: openai:text-embedding-3-large

Install the SDK

npm i langbase

Environment variables

.env file

LANGBASE_API_KEY="<YOUR_API_KEY>"

Generate embeddings

Embedding

POST
/v1/embed
curl https://api.langbase.com/v1/embed \ -X POST \ -H 'Authorization: Bearer <YOUR_API_KEY>' \ -H 'Content-Type: application/json' \ -d '{ "chunks": [ "The quick brown fox", "jumps over the lazy dog" ], "embeddingModel": "openai:text-embedding-3-large" }'

Response

  • Name
    Response
    Type
    number[][]
    Description

    The response is a 2D array where each inner array represents the embedding vector for the corresponding input chunk.

    Embed API Response

    type EmbedResponse = number[][];

API Response

[ [-0.023, 0.128, -0.194, ...], [0.067, -0.022, 0.289, ...], ]