Stream Text pipe.streamText()
You can use a pipe to get any LLM to stream text based on a user prompt. Streaming provides a better user experience, as the moment an LLM starts generating text the user can start seeing words print out in a stream just like ChatGPT.
For example, you can ask a pipe to stream a text completion based on a user prompt like "Who is an AI Engineer?" or give it a an entire doc and ask it to summarize it.
The Langbase AI SDK provides a streamText()
function to stream text using pipes with any LLM.
API reference
streamText(options)
Stream a text completion using streamText()
function.
Function Signature
streamText(options)
// With types.
streamText(options: StreamOptions)
options
- Name
options
- Type
- StreamOptions
- Description
StreamOptions Object
interface StreamOptions { messages?: Message[]; variables?: Variable[]; chat?: boolean; threadId?: string | null; }
Following are the properties of the options object.
messages
- Name
messages
- Type
- Array<Message>
- Description
A messages array including the following properties. Optional if variables are provided.
Message Object
interface Message { role: 'user' | 'assistant' | 'system'| 'tool'; content: string; name?: string; tool_call_id?: string; }
- Name
role
- Type
- 'user' | 'assistant' | 'system'| 'tool'
- Description
The role of the author of this message.
- Name
content
- Type
- string
- Description
The contents of the chunk message.
- Name
name
- Type
- string
- Description
The name of the tool called by LLM
- Name
tool_call_id
- Type
- string
- Description
The id of the tool called by LLM
variables
- Name
variables
- Type
- Array<Variable>
- Description
A variables array including the
name
andvalue
params. Optional if messages are provided.Variable Object
interface Variable { name: string; value: string; }
- Name
name
- Type
- string
- Description
The name of the variable.
- Name
value
- Type
- string
- Description
The value of the variable.
chat
- Name
chat
- Type
- boolean
- Description
For a chat pipe, set
chat
totrue
.This is useful when you want to use a chat pipe to generate text as it returns a
threadId
. Defaults tofalse
.
threadId
- Name
threadId
- Type
- string | null
- Description
The ID of the thread. Useful for a chat pipe to continue the conversation in the same thread. Optional.
- If
threadId
is not provided, a new thread will be created. E.g. first message of a new chat will not have a threadId. - After the first message, a new
threadId
will be returned. - Use this
threadId
to continue the conversation in the same thread from the second message onwards.
- If
Usage example
Install the SDK
npm i langbase
pnpm i langbase
yarn add langbase
.env file
# Add your Pipe API key here.
LANGBASE_MY_PIPE_API_KEY="pipe_12345"
# … add more keys if you have more pipes.
Generate Pipe: Use streamText()
import { Pipe } from 'langbase';
// 1. Initiate your Pipes. `myPipe` as an example.
const myPipe = new Pipe({
apiKey: process.env.LANGBASE_MY_PIPE_API_KEY!,
});
// 2. SIMPLE example. Stream text by asking a question.
const {stream} = await myPipe.streamText({
messages: [{role: 'user', content: 'Who is an AI Engineer?'}],
});
// 3. Print the stream
// NOTE: This is a Node.js only example.
// Stream works differently in browsers.
// For browers, Next.js, and more examples:
// https://langbase.com/docs/sdk/examples
for await (const chunk of stream) {
// Streaming text part — a single word or several.
const textPart = chunk.choices[0]?.delta?.content || '';
// Demo: Print the stream to shell output — you can use it however.
process.stdout.write(textPart);
}
Variables with streamText()
// 1. Initiate the Pipe.
// … same as above
// 2. Stream text by asking a question.
const {stream} = await myPipe.streamText({
messages: [{role: 'user', content: 'Who is {{question}}?'}],
variables: [{name: 'question', value: 'AI Engineer'}],
});
// 3. Print the stream
// … same as above
Chat Pipe: Use streamText()
import { Pipe } from 'langbase';
// 1. Initiate the Pipe.
const myPipe = new Pipe({
apiKey: process.env.LANGBASE_MY_PIPE_API_KEY!,
});
// 2. Stream text by asking a question.
const {stream, threadId} = await myPipe.streamText({
messages: [{role: 'user', content: 'My company is called Langbase'}],
chat: true,
});
// 3. Print the stream
// NOTE: This is a Node.js only example.
// Stream works differently in browsers.
// For browers, Next.js, and more examples:
// https://langbase.com/docs/sdk/examples
for await (const chunk of stream) {
// Streaming text part — a single word or several.
const textPart = chunk.choices[0]?.delta?.content || '';
// Demo: Print the stream to shell output — you can use it however.
process.stdout.write(textPart);
}
// 4. Continue the conversation in the same thread by sending `threadId` from the second message onwards.
const {stream} = await myPipe.streamText({
messages: [{role: 'user', content: 'Tell me the name of my company?'}],
chat: true,
threadId,
});
// You'll see any LLM will know the company is `Langbase`
// since it's the same chat thread. This is how you can
// continue a conversation in the same thread.
Response
Response of streamText()
is a Promise<StreamResponse>
which is an object with stream
and threadId
for chat pipes.
StreamResponse Object
interface StreamResponse = {
threadId: string | null;
stream: StreamText;
};
threadId
- Name
threadId
- Type
- string
- Description
The ID of the thread. Useful for a chat pipe to continue the conversation in the same thread. Optional.
stream
- Name
stream
- Type
- StreamText
- Description
Stream is a
StreamText
object with a streamed sequence ofStreamChunk
objects.
StreamResponse Object
type StreamText = Stream<StreamChunk>;
StreamChunk
- Name
StreamChunk
- Type
- StreamChunk
- Description
Represents a streamed chunk of a completion response returned by model, based on the provided input.
StreamResponse Object
interface StreamChunk {
id: string;
object: string;
created: number;
model: string;
choices: ChoiceStream[];
}
A StreamChunk
object has the following properties.
- Name
id
- Type
- string
- Description
The ID of the response.
- Name
object
- Type
- string
- Description
The object type name of the response.
- Name
created
- Type
- number
- Description
The timestamp of the response creation.
- Name
model
- Type
- string
- Description
The model used to generate the response.
- Name
choices
- Type
- ChoiceStream[]
- Description
A list of chat completion choices. Can contain more than one elements if n is greater than 1.
Choice Object for streamText()
interface ChoiceStream { index: number; delta: Delta; logprobs: boolean | null; finish_reason: string; }
Response of streamText()
// Response of a streamText() call is a Promise<StreamResponse>.
{
threadId: 'string-uuid-123',
stream: StreamText // example of streamed chunks below.
}
StreamText has stream chunks
// A stream chunk looks like this …
{
"id":"chatcmpl-123",
"object":"chat.completion.chunk",
"created":1719848588,
"model":"gpt-4o-mini",
"system_fingerprint":"fp_44709d6fcb"
"choices":[{
"index":0,
"delta":{"content":"Hi"},
"logprobs":null,
"finish_reason":null
}]
}
// More chunks as they come in...
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1719848588,"model":"gpt-4o-mini","system_fingerprint":"fp_44709d6fcb","choices":[{"index":0,"delta":{"content":"there"},"logprobs":null,"finish_reason":null}]}
…
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1719848588,"model":"gpt-4o-mini","system_fingerprint":"fp_44709d6fcb","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
Response stream with tool fn calls
// Stream chunks with tool fn calls have content null and include a `tool_calls` array.
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1723757387,"model":"gpt-4o-mini","system_fingerprint":null,"choices":[{"index":0,"delta":{"role":"assistant","content":null,"tool_calls":[{"index":0,"id":"call_123","type":"function","function":{"name":"get_current_weather","arguments":""}}]},"logprobs":null,"finish_reason":null}]}
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1723757387,"model":"gpt-4o-mini","system_fingerprint":null,"choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"{\""}}]},"logprobs":null,"finish_reason":null}]}
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1723757387,"model":"gpt-4o-mini","system_fingerprint":null,"choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"location"}}]},"logprobs":null,"finish_reason":null}]}
...
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1723757387,"model":"gpt-4o-mini","system_fingerprint":null,"choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"tool_calls"}]}