Run Pipe Agent Chat

This example demonstrates how to maintain a conversational thread with a Langbase pipe agent.


Run Pipe Agent Chat Example

Run Pipe Agent Chat Example

import 'dotenv/config';
import {Langbase} from 'langbase';

const langbase = new Langbase({
	apiKey: process.env.LANGBASE_API_KEY!,
});

async function main() {
	await createSummaryAgent();
	// Message 1: Tell something to the LLM.
	const response1 = await langbase.pipes.run({
		stream: false,
		name: 'summary-agent',
		messages: [{role: 'user', content: 'My company is called Langbase'}],
	});

	console.log(response1.completion);

	// Message 2: Ask something about the first message.
	// Continue the conversation in the same thread by sending
	// `threadId` from the second message onwards.
	const response2 = await langbase.pipes.run({
		stream: false,
		name: 'summary-agent',
		threadId: response1.threadId!,
		messages: [{role: 'user', content: 'Tell me the name of my company?'}],
	});

	console.log(response2.completion);
	// You'll see any LLM will know the company is `Langbase`
	// since it's the same chat thread. This is how you can
	// continue a conversation in the same thread.

}


/**
 * Creates a summary agent pipe if it doesn't already exist.
 *
 * This function checks if a pipe with the name 'summary-agent' exists in the system.
 * If the pipe doesn't exist, it creates a new private pipe with a system message
 * configuring it as a helpful assistant.
 *
 * @async
 * @returns {Promise<void>} A promise that resolves when the operation is complete
 * @throws {Error} Logs any errors encountered during the creation process
 */
async function createSummaryAgent() {
    try {
        await langbase.pipes.create({
            name: 'summary-agent',
			upsert: true,
            status: 'private',
            messages: [
                {
                    role: 'system',
                    content: 'You are a helpful assistant that help users summarize text.',
                },
            ],
        });
    } catch (error) {
        console.error('Error creating summary agent:', error);
    }
}

main();